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ABSTRACT

We approach cover song identification using a novel time-
series representation of audio based on the 2DFT. The au-
dio is represented as a sequence of magnitude 2D Fourier
Transforms (2DFT). This representation is robust to key
changes, timbral changes, and small local tempo deviations.
We look at cross-similarity between these time-series, and
extract a distance measure that is invariant to music structure
changes. Our approach is state-of-the-art on a recent cover
song dataset, and expands on previous work using the 2DFT
for music representation and work on live song recognition.

Index Terms— Cover song identification, audio finger-
printing, Constant Q transform, 2D Fourier transform, adap-
tive thresholding

1. INTRODUCTION

Cover song identification is the act of identifying when two
musical recordings are derived from the same music compo-
sition (e.g., Jimi Hendrix’s All Along The Watchtower is a
cover of the original by Bob Dylan). The cover of a song
can be drastically different from the original recording. It can
change key, tempo, instrumentation, musical structure or or-
der, etc. Identifying cover songs automatically involves find-
ing a representation of the audio that is robust to these trans-
formations. In this work, we present an audio representation
using sequences of 2D Fourier Transforms (2DFT) for the
purpose of cover song identification.

[1] is the first work that tackles cover song identification,
using an approach based on beat-synchronous chromagram
representations of audio. The chromagrams of the covers and
the originals are cross-correlated in pitch and time. When the
cover and the original match, there will be a peak in the cross-
correlation matrix. The beat-tracking makes their method re-
silient to tempo variation, and the cross-correlation in chroma
and time makes it resilient to key changes and time skews.
As the chromagram retains only pitch class information, it
is somewhat resilient to instrumentation changes. Our work
does not use the chromagram, but instead uses other tech-
niques to be robust to instrumentation changes. It does not do

cross-correlation, and instead uses the properties of the 2DFT
to be robust to time and pitch skews.

[2] further explores chromagram-based work for cover
song identification, using techniques based on tonal subse-
quence alignment. [3] proposes a tempo-invariant approach
by sampling the chromagram at different time rates, skews,
and pitch shifts. In [4], songs are converted into a series
of local mel-frequency cepstrum coefficients self-similarity
patches (timbral shape sequences). These series of patches
are aligned using local dynamic time warping for cover song
identification. [5] uses a pretraining phase on the reference
set, where characteristic phrases are extracted from each ref-
erence (music shapelets). These music shapelets are then
used to identify cover songs. [6] proposes a fast and effective
method for subsequence matching of time-series for cover
song identification. For a more in-depth review of cover song
identification, the reader is referred to [7]. In [8], [9] and
[10], ensemble techniques are explored for cover song iden-
tification. This work proposes a new method that could be
used in these ensemble approaches.

Some works address large-scale cover song recognition.
In large-scale cover song recognition, a distance matrix must
be computed between every pair of songs (on the order of mil-
lions of comparisons) efficiently. This requires features with
low complexity and fast computation, which will act as a first
stage to cull the possible reference set. On the reduced refer-
ence set, a more complex feature (such as the one in our work)
can be applied. In [11], the problem is reduced to searching
for chord sequences, represented as text. In [12], a hashing
approach is proposed for the large-scale search.

The most closely related work to our own is [13], which
is the first to propose the 2DFT for the purpose of cover song
identification at a large scale. In their work, the 2DFT is
computed on overlapping segments of the beat synchronous
chromagram. These 2DFT chromagrams are then summa-
rized into a single image patch. Cover song identification is
done by comparing these image patches. [14] proposes us-
ing the 2DFT for identifying repeating sections in music, and
uncovering musical structure in audio. Similarly, [15] looks
at the cover song identification problem through the lens of
music structure similarity.



Audio fingerprinting is the act of identifying exact rendi-
tions of references in complex audio scenes [16, 17, 18]. In
between the cover song identification problem and the audio
fingerprinting problem is live song recognition, which is ex-
plored in [19] and [20]. In live song recognition, the task is
to recognize a live song (e.g., at a concert) performed by the
original artist. In this task, there may be key variation, slight
tempo variation, and musical structure changes (e.g., for an
artist that is known to improvise). The signal may also be de-
graded (e.g., crowd noise, bad microphone), as in the regular
audio fingerprinting task. In this work, we extract features
from the fingerprint proposed in [19]. We find that deriving
representations from this fingerprint is important for our al-
gorithm. It may be a useful direction for other cover song
identification algorithms as well.

2. PROPOSED METHOD

2.1. The 2D Fourier Transform on Musical Signals

The 2DFT, like the 1DFT in music analysis, is a popular tech-
nique in digital image processing, and is used for image de-
noising and compression, among other things [21]. The 2DFT
breaks down images into sums of sinusoidal grids at different
periods and orientations, represented by points in the 2DFT.
On a spectrogram with a log-frequency scale, points along
the y-axis of the transform represent periodicities along the
frequency domain of the spectrogram, and points along the x-
axis represent periodicities along the time domain of the spec-
trogram. Points not on the x or y axis represent periodicities
at different orientations on the spectrogram. The information
about the exact position of the sinusoidal grids in the original
image is kept entirely in the phase. A useful representation of
musical audio is the Constant Q Transform (CQT) [22, 23].
The CQT is a transform with a logarithmic frequency resolu-
tion, with spacings between frequencies mirroring the human
auditory system, and the Western musical scale. A linear shift
in frequency in the CQT corresponds to a pitch shift in the
music. By taking the magnitude of the 2DFT on the CQT, we
obtain a key-invariant representation of the audio.

2.2. Fingerprint with CQT and Adaptive Thresholding

The three steps of our system can be seen in Figure 1. In
the first step, the entire time-domain audio signal is converted
into a CQT, with frequencies corresponding to the musical
scale between C3 (130.81 Hz) and C7 (2093 Hz), with a fre-
quency resolution of 2 frequency bins per semitone and a time
resolution of 10 frames per second. The CQT is an important
step because a cover song in a different key will correspond
to a linear shift in the CQT. The CQT of Can’t Help Falling
in Love (Elvis Presley) is shown in the top image in Figure 1.

In the second step, we use the adaptive thresholding tech-
nique presented in [19] to binarize the CQT. The technique
slides a patch of a specified size along the CQT. Inside the

0:00 0:02 0:05 0:07 0:10 0:12 0:15 0:17 0:20 0:22 0:25 0:27
Time

C3
G3
C4
G4
C5
G5
C6
G6

P
it

ch

Constant-Q Transform of Can't Help Falling in Love - Elvis Presley

0:00 0:02 0:05 0:07 0:10 0:12 0:15 0:17 0:20 0:22 0:25 0:27
Time

C3
G3
C4
G4
C5
G5
C6
G6

P
it

ch

Fingerprint with Adaptive Thresholding/CQT

-10.0 -5.0 0 5.0 10.0
-48

-24

0

24

48

S
e
m

it
o
n
e
s

2DFT for 0:00 to 0:20

-10.0 -5.0 0 5.0 10.0
Periodicity in time (s)

2DFT for 0:04 to 0:24

-10.0 -5.0 0 5.0 10.0

2DFT for 0:08 to 0:28

Fig. 1. Overview of our system. First, we take the CQT of the
audio. Next, we fingerprint the CQT using an adaptive thresh-
olding method [19]. Finally, we take 2DFTs over sliding win-
dows on the fingerprint, producing a 2DFT sequence, shown
here with power compression for visualization purposes.

patch, values are set to 1 if they are above the median of the
patch (i.e., the local median), and 0 otherwise. This has the
effect of scrubbing timbral information as well as balancing
the sound levels of different sources in the mixture. Thus,
if a source (e.g., a distorted guitar) dominates the mixture in
the original recording, but is not present in the cover (e.g., an
acoustic cover with no distorted guitar), the fingerprint will be
robust to these drastic changes in timbre and energy. In [13],
they found that pre-processing the chromagram to increase
high-energy bins relative to low-energy bins improved per-
formance. They argue that it accentuates the main patterns in
the signal. We find similar results, and argue that this finger-
print would also be useful for other problems. The fingerprint
is shown in the middle image in Figure 1.

Finally, we take overlapping 20 second windows of the
fingerprint, and compute the 2DFT of each. For each 2DFT,
we take the magnitude, discarding the phase, and add a small
amount of Gaussian blurring (σ = .375). We then hop for-
ward by 4 seconds, and take another 2DFT. We continue this
until we’ve reached the end of the fingerprint. Each 20 second
window has a dimensionality of 96 by 200, and each 2DFT
has the same dimensionality. The sequence of 2DFTs, shown
in Figure 1, is used to represent the audio and the represen-
tations are compared for cover song identification. It is key-
invariant due to the properties of the magnitude 2DFT. The
values of the 2DFT capture characteristic periodic patterns in
frequency and in time. All together, these values characterize
the melody and accompaniment in a key-invariant way. This
is useful for cover song identification, as melody will often be
retained in a cover song.

This representation is key-invariant, retains spectral and
temporal structural information, and scrubs loudness and tim-
bral information. All of these may change considerably be-
tween a cover song and the reference recording. Small tempo
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Distance: 72.86 - Time stretch: 0.95

Fig. 2. Similarity matrix constructed using Euclidean distance
between 2DFT sequences on a ukulele cover of Can’t Help
Falling In Love and the original studio version. The subse-
quence matches used for the distance measure are indicated
by the solid lines.

deviations between the cover and the reference can be taken
care of by the Gaussian blurring we applied to each 2DFT,
which blurs the exact location of temporal periodicities in the
audio. However, large tempo deviations need to be dealt with
more directly. To do this, we simply change the sampling rate
on the reference recordings, and repeat our fingerprinting pro-
cedure on the recordings with different sampling rates. This
causes a pitch shift in the CQT, due to the similarity theorem
for Fourier transforms. However, the key-invariance of the
magnitude 2DFT means this pitch shift does not matter. For
each reference recording, we fingerprint between 0.5 and 2
times the original sample rate at 0.05 intervals. These cor-
respond to half speed and double speed, respectively. This
results in 30 2DFT sequences for each reference. For a query
recording, we fingerprint only at the original sample rate.

2.3. Search

In cover song identification, we are given a query song and
compare it against a database of reference songs using a dis-
tance measure. The reference songs are then ranked in as-
cending distance. A good distance measure will have the cor-
rect reference song highly ranked for a given query. We com-
pute this distance measure from a similarity matrix between
the query and a candidate reference song. The query and the
reference are represented as a sequence of 2DFTs. We com-
pute the Euclidean distance between every pair of 2DFTs and
store them in a similarity matrix (SM). We save the energy of
the unnormalized SM E. We then normalize the SM by its
maximum value.

We then post-process the SM by convolving it with a
checkerboard kernel, as in [24]:[

1 -1
-1 1

]
Positive elements in the convolved SM correspond to

diagonal matches and negative elements correspond to non-
diagonal matches. We set all negative elements to 0, resulting
in a SM with just the diagonals, as shown in Figure 2. The
checkerboard kernel leaves sequential matches in, and takes
spurious matches between single 2DFT patches between the
cover and reference out. A diagonal of length 2 in the pro-
cessed similarity matrix corresponds to a 24 second match
between the query and the reference.

To compute the distance between a query and reference,
we extract diagonals from the SM, and record their sum and
length. To do this, we iterate through each diagonal in the SM
and segment it into non-zero sequences. These sequences are
matches beginning and ending at offsets in the cover and the
reference. For each sequence, we record its sum w and its
length l. The diagonal is scored by the product of these two:
wl. We then sort all of the diagonals in the SM by decreas-
ing score, and take the sum of the top three diagonals. These
top three diagonals are the dominant subsequence matches be-
tween the query and reference. Finally, we divide the energy
of the unnormalized SM,E, by the sum of the top 3 diagonals
to obtain a distance measure:

d(q, r) =
E∑3

i=1 wili
, wi, li ∈ diags(SMq,r)

where i is the index of the sorted diagonals list extracted from
SMq,r, the similarity matrix between the query (q) and the
reference (r), via the function diags, as seen in Figure 2. The
number of diagonals to sum is a free parameter. 3 was deter-
mined experimentally on a development dataset.

This approach only cares about sequential matches hap-
pening somewhere in the SM, and not where they are. This is
similar to the subsequence matching for cover song identifi-
cation, as in [5] and [6]. As a result, the distance measure is
invariant to music structure changes (e.g., a skipped bridge or
verse, or added intro and outro) which a straightforward dy-
namic time warping (DTW) approach would be sensitive to.
In addition, this approach is much faster than DTW. However,
if the tempo of the cover is significantly different than the
tempo of the original, no strong diagonals would be present
and this technique for subsequence matching will fail. We ac-
count for this by computing the SM across all the resampled
versions of the reference audio. The final distance between a
query q and reference r is then:

distance(q, r) = min
x∈{.5,.55,...,2}

d(q, rx)

where rx indicates the reference resampled by a factor x.



Algorithm MAP P@10 MR1
DTW [5] 0.425 0.114 11.69
Silva et al. [5] 0.478 0.126 8.49
Serra et al. [2] 0.525 0.132 9.43
Silva et al. [6] 0.591 0.140 7.91
Proposed (on CQT) 0.521 0.122 9.75
Proposed (on fingerprint [19]) 0.648 0.145 8.27

Table 1. Mean average precision (MAP), precision at 10
(P@10), and mean rank of first correctly identified cover
(MR1) for the YouTube Covers dataset for existing approaches
and our approach. Since there are two possible correct refer-
ences for each query, P@10 has a maximum value of 0.2.

The SM for a cover and its correct reference is shown in
Figure 2. In this cover, the verse starts at 16 seconds, and in
the reference, the verse starts at 8 seconds. In the SM, a clear
diagonal can be seen indicating sequential matches. In the
cover, the singer also adds a longer intro section than in the
original song. In addition, the instrumentation has changed
considerably. The original song has drums, guitar, piano,
backing vocals, and a male lead singer. The cover song has a
ukulele playing the chords, and a female singer on the melody,
which is now an octave higher than the original, and is slightly
slower. There are also structural changes. The best alignment
was found at a resampling factor of 0.95. The SM in Figure 2
shows that the proposed representation and proposed distance
measure is robust to these changes.

3. EVALUATION

We test our approach on the Youtube Covers dataset, which
was also used in [5] and [6]. The dataset consists of 50 com-
positions, with 7 recordings of each. Of these recordings, 1
is the original studio version, 1 is a live version performed by
the original artist, and 5 are covers drawn from YouTube. The
reference set consists of the original studio versions and the
live versions for each composition. The query set consists of
the 5 covers for each composition. In all, the size of the refer-
ence set is 100, and the size of the query set is 250. In the ex-
periment, we take each query and compare to every reference,
getting a distance for each query/reference pair. We then rank
the references for each query, and compute the mean average
precision, the precision at 10, and the mean rank of the first
correctly identified cover, as in [5]. These evaluation mea-
sures are the same as the ones used in the MIREX cover song
identification task1.

We developed our algorithm using the covers80 dataset
[1]. This dataset consists of 80 compositions, with 2 record-
ings of each, one of which is a cover, and the other the orig-
inal. Once we discovered good parameters for our approach
on this dataset (44/80 with adaptive thresholding, and 36/80

1http://www.music-ir.org/mirex/
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Fig. 3. Similarity matrices for a cover/reference pair with
and without the adaptive thresholding step. The diagonals are
more visible when the CQT is adaptively thresholded.

without), we tested on the Youtube Covers dataset with no al-
gorithm or parameter changes (2DFT window size of 20 sec-
onds, hop size of 4 seconds, σ = .375). We compare our
approach with recent cover song identification approaches:
music shapelets [5], similarity matrix profiles [6], chroma bi-
nary similarity with local alignment [2], and dynamic time
warping of Chroma Energy distribution Normalized Statistics
feature vectors [25] [5]. We also compare two variants of our
approach: one with adaptive thresholding and one without.

Our results can be seen in Table 1. In mean average pre-
cision and precision at 10, the proposed approach surpasses
current state-of-the-art methods on this dataset. The proposed
approach finds 164 covers out of 250 correctly at top one.
The impact of the adaptive thresholding step is significant,
causing a jump in mean average precision of 0.127, and go-
ing from the worst performing approach to the best perform-
ing approach in terms of P@10. The adaptive thresholding
step emphasizes structure over timbre and energy leading to
a more robust similarity measure, as seen in Figure 3. Our
approach does well on faithful covers where a critical mass of
melodic and harmonic structural information is retained (e.g.
melody, chords), but fails when the cover retains a small por-
tion of the original (e.g. too much variation in melody in a
jazz rendition of My Favorite Things).

4. CONCLUSION

We have presented an approach for cover song identification
that uses a time-series representation of audio based on the
magnitude 2DFT. The audio is represented as a sequence of
magnitude 2D Fourier transforms. The representation is ro-
bust to key changes, timbral changes, and small local tempo
deviations. We look at similarity between these time-series
representations, and extract a distance measure that is invari-
ant to structural changes. We note that the adaptive thresh-
olding is an important pre-processing step. Our approach is
state-of-the-art on a cover song dataset, and expands on pre-
vious work using the 2DFT for music representation.
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